Technical Session 6 – Performance Drilling

Posted on 13 February 2013

Editor’s note: These abstracts have been edited for space and clarity. This program is current as of 15 January 2013. Additions, withdrawals and other changes to the conference program after this date may not be reflected. Click here for the most updated program.

TECHNICAL SESSION 6: PERFORMANCE DRILLING

SPE/IADC 163548

A Brief History of the Shell “Soft Torque Rotary System” and Some Recent Case Studies, J.J. Runia, S. Dwars, Shell; I. Stulemeijer, Consultant

The Shell “Soft Torque Rotary System” is a rotary drive control system to mitigate torsion vibrations in oil and gas drilling. The system was developed by Shell (with help from industry partners) in the early ‘90s and commercialized by licensing to a number of industry equipment suppliers. The original system was developed for DC-drilling drives using analogue torque feedback. The development of next generation AC drives in the drilling industry has required a re-look and upgrade of the technology. Currently we have rejuvenated the technology and introduced stringent commissioning criteria to safeguard the quality of deployment. An overview of these developments will be given, seen from a Shell perspective. In addition, a number of recent case histories will be presented.

SPE/IADC 163558

Fit-for-Purpose BHA Design for Drilling Complex Wells Offshore Brunei Leads to New Industry Benchmark, B. Legarth, S. Dustin, J. Montero, Brunei Shell Petr. Sdn Bhd; J.R. Walker, R. Mulligan, C. Maeso, Schlumberger WTA Malaysia S/B

The paper will discuss engineering solutions implemented to mitigate risks from break-outs and complex well geometries, which consequently contributed greatly to deliver the subsequent 6,500-meter high complexity ERD well at 21.28 days ahead of AFE and with a best in class performance in the Rushmore Benchmark.

SPE/IADC 163475

Instrumented IBOP Improves Measurements for Drilling and Equipment Optimization, J. Anderson, J. Standefer, R. Wylie, National Oilwell Varco

SPE/IADC 140347 described an instrumented surface sub (ISS) that included a vibration sensor, in addition to the standard measurements. Though tests appeared promising, practical ISS application proved difficult because of modifications needed to existing drilling equipment and resulting working space reductions between the crown block and drill floor.

To overcome these operational drawbacks, the sensor system was integrated into a standard internal blowout preventer (IBOP). Designing the instrumented IBOP presented many challenges both electrically and mechanically based on system requirements. This paper discusses the solutions for these design challenges and the validations that overcome each challenge, including lab and field testing.

SPE/IADC 163406

Application of Targeted Bit Speed (TBS) Technology to Optimize Bakken Shale Drilling, W.D. Bassarath, C.A. Maranuk, Weatherford International

This paper examines the results of two 10,000-ft horizontal wells drilled in North Dakota. The first well was drilled to the planned total depth using TBS technology; the second well (not using TBS technology) was terminated prematurely due to high torque and drag. This paper details the improvement in the drilling process that this new technology offers by way of key metrics, such as reduced drilling time and improved wellbore geometry, with consequential cost savings.

SPE/IADC 163408

Maximizing BHA Durability/Reliability: Turbodrill/Impregnated Bit Significantly Reduces Drilling Time in Granite Wash Laterals, G. Bone, C.D. Jamerson, Apache Corp; A.J. Klassen, J. Gray, Schlumberger; R.N. Baker, K.D. Turner, M. Parra, Smith Bits, a Schlumberger Company

Inconsistent roller cone/PDC bit performance drilling horizontally through the hard/abrasive Granite Wash reservoir in western Oklahoma has resulted in low ROP, increased operating days and escalating drilling costs. The authors will present case histories that illustrate performance achievements in the horizontal section and provide details that contributed to the success of the unique BHA.

SPE/IADC 163505

Drilling Optimization in Deep Tight Gas Field, M.A. Al-Sharafi, N. Hariri, M. Nasrumminallah, Schlumberger; M. Al Naamani, PDO

In Oman, a high temperature/pressure, deep vertical tight gas exploration field required to reduce the drilling AFE. This paper provides a benchmark for similar high temperature/pressure tight gas projects, where cost is a concern and requires a technical solution.

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 22 April 2014

    Noble names Steven Manz as Senior VP And CFO of Paragon Offshore

    Steven A. Manz will serve as Senior VP and CFO of Noble Corp’s spinoff company Paragon Offshore, a standard specification offshore drilling company, Noble announced today...

  • 17 April 2014

    Shell makes deepwater gas discovery offshore Malaysia

    Shell has made an exploration discovery offshore Malaysia in the Rosmari-1 well located 135 km offshore Malaysia in Block SK318. The well was drilled to a total depth of 2,123...

  • 16 April 2014

    Maersk Drilling takes delivery of ultra-deepwater drillship

    Maersk Drilling has taken the delivery of its second drillship, Maersk Valiant from the Samsung Heavy Industries (SHI) shipyard in Geoje-Si, South-Korea. Maersk Valiant has begun its voyage toward the...

  • 16 April 2014

    Ensco orders new jackups from Lamprell

    Ensco has ordered two high-specification jackups, ENSCO 140 and ENSCO 141, for delivery in mid-2016 from Lamprell’s shipyard in the United Arab Emirates. The rigs will also...

  • 16 April 2014

    MPD/UBD successfully drills sidetrack after 6 failed conventional drilling attempts

    In the Brookeland Field in East Texas, conventional drilling methods failed in six attempts to drill a “straightforward” horizontal wellbore. The original well had surface casing installed...

  • Read more news