Environmentally friendly proppant technology to improve hydraulic fracturing efficiency

Posted on 28 May 2013

Preferred Sands uses non-phenolic, resin-coating technology at its plant in Genoa, Neb. The technology is designed to be more environmentally friendly and efficient than conventional phenolic-based resins and has been introduced in five US basins, including the Permian, Bakken, Mid-Continent, Utica and Eagle Ford, and in central Alberta, Canada. Preferred Sands plans to open a second processing plant in May.

Preferred Sands uses non-phenolic, resin-coating technology at its plant in Genoa, Neb. The technology is designed to be more environmentally friendly and efficient than conventional phenolic-based resins and has been introduced in five US basins, including the Permian, Bakken, Mid-Continent, Utica and Eagle Ford, and in central Alberta, Canada. Preferred Sands plans to open a second processing plant in May.

By Katie Mazerov, contributing editor

Preferred Sands has launched a non-phenolic, resin-coating technology designed to be more environmentally friendly and efficient than conventional phenolic-based resins.

The technology, developed in collaboration with Dow Chemical Company, has been introduced in five US basins, including the Permian, Bakken, Mid-Continent, Utica and Eagle Ford, and in central Alberta, Canada, said Preferred Sands founder and CEO Michael O’Neill. The product has been used by more than 50 operators in more than 100 wells.

“This innovative process allows for coated sand to be produced in a manufacturing process that requires less energy while minimizing environmental impact compared to current phenolic resins,” he said. “It also provides the industry with an outstanding performance-to-cost value, enabling users to substantially improve operations while still curtailing expenses.”

The resin was developed to meet three critical needs of the oil and gas industry. “Not only does it perform well under a range of conditions and depths, it is also cost-effective and contributes to the sustainability of the drilling process,” Mr O’Neill continued.

Phenolic-based resins, which contain phenol and formaldehyde, can leach into well water or impact viscosity or cross-linking fracturing fluids used to place the proppant, he explained. In addition, partially cured phenolics often fully cure before the fracture has the opportunity to close and force particle-to-particle contact, thus are unable to create a strong consolidation or bond.

The non-phenolic products do not bond until they achieve closure stress, so they can hold all the bond strength ability to consolidate in the fracture, resulting in greater efficiency and reduced cost.

The technology marks two new product lines for the company, each addressing specific well conditions. The RCS Garnet is designed to control flowback in low-temperature reservoirs and includes a built-in ability to bond at low temperatures that does not require additional chemical treatment. “Phenolics came out of the foundry industry and were made for very hot temperatures, so they struggle to perform at lower temperatures,” Mr O’Neill explained.

Activators, which can be added to conventional phenolic resins to help them create a low-temperature bond, often cause the surface of the resin to deform under stress and so perform with mixed results. “Weakening the surface lowers the conductivity of the phenolic,” Mr O’Neill said. “The RCS Garnet doesn’t require an activator, so it holds its strength and conductivity and will bond all the way to down to below 80°F,” he said.

A conveyor belt transports sand before it is coated with Preferred Sands’ non-phenolic resin technology.

A conveyor belt transports sand before it is coated with Preferred Sands’ non-phenolic resin technology.

The RCS Pearl was developed to deliver better bond strength and flowback protection in hotter, deeper wells. Preferred Sands expects to introduce two additional products in September, Mr O’Neill said. The company also will open a second processing plant in May and has been approached by operators in several countries interested in using the non-phenolic resin technology. Germany and several other European countries don’t allow phenolics to be pumped into wells.

“The future of hydraulic fracturing is going to be about who delivers the most value for clients and the greatest technical efficiency, and the ability to innovate and create new products,” Mr O’Neill said. “For hydraulic fracturing to be sustainable for the long term and stand up to scrutiny, industry needs to continually look at improving all aspects of the process.”

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 17 April 2014

    Shell makes deepwater gas discovery offshore Malaysia

    Shell has made an exploration discovery offshore Malaysia in the Rosmari-1 well located 135 km offshore Malaysia in Block SK318. The well was drilled to a total depth of 2,123...

  • 16 April 2014

    Maersk Drilling takes delivery of ultra-deepwater drillship

    Maersk Drilling has taken the delivery of its second drillship, Maersk Valiant from the Samsung Heavy Industries (SHI) shipyard in Geoje-Si, South-Korea. Maersk Valiant has begun its voyage toward the...

  • 16 April 2014

    Ensco orders new jackups from Lamprell

    Ensco has ordered two high-specification jackups, ENSCO 140 and ENSCO 141, for delivery in mid-2016 from Lamprell’s shipyard in the United Arab Emirates. The rigs will also...

  • 16 April 2014

    MPD/UBD successfully drills sidetrack after 6 failed conventional drilling attempts

    In the Brookeland Field in East Texas, conventional drilling methods failed in six attempts to drill a “straightforward” horizontal wellbore. The original well had surface casing installed...

  • 16 April 2014

    Chevron’s DGD training program serves array of learners across generations

    Since 2008, more than 400 people – from operators, drilling contractors, service companies and regulators – have completed Chevron’s dual-gradient drilling (DGD) training...

  • Read more news