CATEGORIZED | News

Methane hydrate technologies to be tested on Alaska’s North Slope

Posted on 25 October 2011

The US Department of Energy (DOE), ConocoPhillips and the Japan Oil, Gas and Metals National Corp will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The tests will use the “Ignik Sikumi” gas hydrate field-trial well, a fully instrumented borehole installed in the Prudhoe Bay region by ConocoPhillips and the Office of Fossil Energy’s National Energy Technology Laboratory earlier this year.

Current test plans call for roughly 100 days of continuous operations from January to March 2012. Tests will include the initial field trial of a technology that involves injecting CO2 into methane hydrate-bearing sandstone formations, resulting in the swapping of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This experiment will be an extension of earlier successful tests of the technology conducted by ConocoPhillips and their research partners in a laboratory setting.

Following the exchange tests, the team will conduct a monthlong evaluation of an alternative methane-production method called depressurization. This process involves pumping fluids out of the borehole to reduce pressure in the well, which results in dissociation of methane hydrate into methane gas and liquid water. The method was successfully demonstrated during a weeklong test conducted by Japan and Canada in northwestern Canada in 2008.

The new testing will take place under a statement for cooperation signed in 2008 and extended in 2011 by DOE and Japan’s Ministry of Economy, Trade and Industry. The production tests are the next step in both US and Japanese efforts to evaluate the response of gas hydrate reservoirs to alternative gas hydrate production concepts. The tests will provide critical information to inform potential future extended-duration tests.

Methane hydrate consists of molecules of natural gas trapped in an open rigid framework of water molecules. It occurs in sediments within and below thick permafrost in Arctic regions and in the subsurface of most continental waters with a depth of approximately 1,500 ft or greater. Many experts believe it represents a potentially vast source of global energy, and DOE scientists have studied methane hydrate resource potential and production technologies for more than two decades.

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 03 March 2015

    Kosmos Energy finds hydrocarbons in CB-1 exploration well offshore Western Sahara

    Kosmos Energy announced that the CB-1 exploration well located in the Cap Boujdour permit area offshore Western Sahara encountered hydrocarbons. The well penetrated...

  • 02 March 2015

    Maersk Voyager drillship secures contract for work offshore Ghana

    Maersk Drilling has been awarded a contract from Eni Ghana Exploration and Production, an Eni subsidiary, for employment of the newbuild drillship Maersk Voyager...

  • 02 March 2015

    Wisco Moran debuts Padwise 1 walking rig in Texas

    The trend among drilling contractors to install walking systems on rigs has solved a major logistical problem for operators on multiwell pads – negating the need for costly...

  • 26 February 2015

    JDC inaugurates Hakuryu 12 jackup, looks to growth in Middle East, Myanmar and Russia

    The Japanese word “hakuryu” means “white dragon.” In Asia, dragons are strongly associated with oceans. They also represent power and blessings...

  • 16 February 2015

    Steven Newman steps down as Transocean President, CEO

    Transocean announced that Steven Newman and the Board of Directors have mutually agreed that he will step down as President and CEO, effective 16 February 2015...

  • Read more news