CATEGORIZED | News

Methane hydrate technologies to be tested on Alaska’s North Slope

Posted on 25 October 2011

The US Department of Energy (DOE), ConocoPhillips and the Japan Oil, Gas and Metals National Corp will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The tests will use the “Ignik Sikumi” gas hydrate field-trial well, a fully instrumented borehole installed in the Prudhoe Bay region by ConocoPhillips and the Office of Fossil Energy’s National Energy Technology Laboratory earlier this year.

Current test plans call for roughly 100 days of continuous operations from January to March 2012. Tests will include the initial field trial of a technology that involves injecting CO2 into methane hydrate-bearing sandstone formations, resulting in the swapping of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This experiment will be an extension of earlier successful tests of the technology conducted by ConocoPhillips and their research partners in a laboratory setting.

Following the exchange tests, the team will conduct a monthlong evaluation of an alternative methane-production method called depressurization. This process involves pumping fluids out of the borehole to reduce pressure in the well, which results in dissociation of methane hydrate into methane gas and liquid water. The method was successfully demonstrated during a weeklong test conducted by Japan and Canada in northwestern Canada in 2008.

The new testing will take place under a statement for cooperation signed in 2008 and extended in 2011 by DOE and Japan’s Ministry of Economy, Trade and Industry. The production tests are the next step in both US and Japanese efforts to evaluate the response of gas hydrate reservoirs to alternative gas hydrate production concepts. The tests will provide critical information to inform potential future extended-duration tests.

Methane hydrate consists of molecules of natural gas trapped in an open rigid framework of water molecules. It occurs in sediments within and below thick permafrost in Arctic regions and in the subsurface of most continental waters with a depth of approximately 1,500 ft or greater. Many experts believe it represents a potentially vast source of global energy, and DOE scientists have studied methane hydrate resource potential and production technologies for more than two decades.

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 01 October 2014

    Drillmec automated rig, drilling package designed to ensure safety, increase efficiency

    Drillmec has designed an automated drilling rig – AHEAD, Advanced Hydraulic Electrical Automated Driller – that reduces the rig footprint by approximately 50%...

  • 01 October 2014

    Noble Energy to resume exploration drilling offshore Falkland Islands

    Noble Energy.plans to resume exploration drilling in the Falkland Islands in 2015, following the acquisition and evaluation of an extensive 3D seismic program…

  • 01 October 2014

    Video: Schlumberger mapping-while-drilling service expands view around wellbore

    GeoSphere, Schlumberger’s new reservoir mapping-while-drilling service, optimizes well placement operations and steering capabilities with deep-directional...

  • 30 September 2014

    Statoil, Shell and Sonatrach awarded acreage onshore Algeria

    Statoil and Shell were awarded the Timissit Permit License in the Illizi-Ghadames Basin onshore Algeria. The license is in southeastern Algeria and covers an area of 2,730 sq km...

  • 29 September 2014

    Rosneft discovers oil in Kara Sea

    Rosneft successfully completed the drilling of the Universitetskaya-1 well in the Arctic – the northernmost well in the world, according to the company, and discovered oil at the East-Prinovozemelskiy-1 license area...

  • Read more news