CATEGORIZED | News

Methane hydrate technologies to be tested on Alaska’s North Slope

Posted on 25 October 2011

The US Department of Energy (DOE), ConocoPhillips and the Japan Oil, Gas and Metals National Corp will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The tests will use the “Ignik Sikumi” gas hydrate field-trial well, a fully instrumented borehole installed in the Prudhoe Bay region by ConocoPhillips and the Office of Fossil Energy’s National Energy Technology Laboratory earlier this year.

Current test plans call for roughly 100 days of continuous operations from January to March 2012. Tests will include the initial field trial of a technology that involves injecting CO2 into methane hydrate-bearing sandstone formations, resulting in the swapping of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This experiment will be an extension of earlier successful tests of the technology conducted by ConocoPhillips and their research partners in a laboratory setting.

Following the exchange tests, the team will conduct a monthlong evaluation of an alternative methane-production method called depressurization. This process involves pumping fluids out of the borehole to reduce pressure in the well, which results in dissociation of methane hydrate into methane gas and liquid water. The method was successfully demonstrated during a weeklong test conducted by Japan and Canada in northwestern Canada in 2008.

The new testing will take place under a statement for cooperation signed in 2008 and extended in 2011 by DOE and Japan’s Ministry of Economy, Trade and Industry. The production tests are the next step in both US and Japanese efforts to evaluate the response of gas hydrate reservoirs to alternative gas hydrate production concepts. The tests will provide critical information to inform potential future extended-duration tests.

Methane hydrate consists of molecules of natural gas trapped in an open rigid framework of water molecules. It occurs in sediments within and below thick permafrost in Arctic regions and in the subsurface of most continental waters with a depth of approximately 1,500 ft or greater. Many experts believe it represents a potentially vast source of global energy, and DOE scientists have studied methane hydrate resource potential and production technologies for more than two decades.

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 22 April 2015

    Transocean appoints Jeremy D. Thigpen as President & CEO

    Transocean has announced that Jeremy D. Thigpen has been named President and Chief Executive Officer effective 22 April 2015. Mr Thigpen succeeds Ian C. Strachan, Interim...

  • 22 April 2015

    Noted broadcast journalist Eithne Treanor to MC IADC World Drilling 2015, Rome, 17-18 June

    IADC is pleased to announce that noted industry broadcast journalist and professional moderator Eithne Treanor will serve as master of ceremonies...

  • 22 April 2015

    UBO & MPD Committee drives safe practices, while survey indicates industry moving toward acceptance

    The IADC Underbalanced Operations & Managed Pressure Drilling Committee continues to drive safe practices...

  • 22 April 2015

    Video: Schlumberger’s At Balance brand aims to make MPD more accessible

    Schlumberger recently brought back the At Balance brand as a family of product and services offering at the 2015 IADC/SPE Managed Pressure Drilling and Underbalanced...

  • 21 April 2015

    Petrobras’ first MPD operation aboard a DP rig succeeds

    Petrobras’ first use of MPD aboard a dynamically positioned rig proved successful and kept NPT to less then 3%, according to a paper presented at the 2015 IADC/SPE...

  • Read more news