New GE tool offers real-time shock, vibration measurement

Posted on 05 March 2014

GE has unveiled its Directive system, which adds real-time shock and vibration measurement capabilities to the company’s Tensor Directional Module, from its measurement while drilling (MWD) family of downhole drilling equipment. The tool helps to optimize drilling penetration rates by allowing adjustments and corrections to be made quickly based on real-time data. Real-time management of downhole vibrations also is expected to reduce equipment damage, thereby reducing nonproductive time and costs.

“The design and development of the Directive sensor package was driven by ever-increasing customer requirements for improved reliability and real-time shock and vibration measurements at high temperature,” said James Junker, Global Business Leader—GE Downhole Technology for GE Oil & Gas. “Such measurements aren’t new to the industry, but the Directive system design features inherent calibration stability for a far longer duration than other commercially available products, leading to a lower cost of ownership for this tool versus competitive products.”

Optimal placement of directional and horizontal wells within a reservoir requires knowing the precise location of the drill bit and the orientation of its tool face at every moment during the drilling process. The drill bit’s location is measured by downhole gravity and magnetic sensors, which are used to perform directional surveys that take into account inclination, azimuth and drill bit tool face orientation. The survey information is then transmitted uphole either through mud pulse telemetry or electromagnetic waves. The Directive sensor package provides critical real-time measurements designed to enable the drill bit to be oriented in a preferred direction quickly.

The system has a simplified, ruggedized and compact design with fewer components and can operate at operating temperatures up to 175°C. Calibration stability of the sensor package under harsh drilling conditions is engineered for longer intervals. Additionally, the system has greater processing power than the Tensor Directional Module and features a simplified board design, which packs the processor, four channels of detectors, an A/D converter, two MEMS accelerometers and 32 MB of memory for enhanced diagnostics and lifetime events storage, all on a reduced number of boards.

1 Comments For This Post

  1. Qiming Li Says:

    Hi Great article. Can you confirm that the Directive System has “Two” MEMS accelerometers? Usually it takes three in such an D&I module. Thanks. Qiming

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 19 November 2014

    Stepwise approach guides Statoil’s North American onshore path

    When Statoil entered the North American onshore industry in 2008, it was a non-operator in a joint venture (JV) with Chesapeake in one shale play. Since then, Norwegian-based…

  • 18 November 2014

    Stilley: Despite challenging outlook, opportunities are plenty in the long term

    Opportunities abound for the drilling industry even in an environment of high costs and falling oil prices, Randall D. Stilley, President & CEO of Paragon Offshore, said...

  • 18 November 2014

    In well control, an ounce of prevention is worth a pound of cure

    It has been more than four years since Macondo, and the long-term effects of the oil spill are still being determined. “Oil is a natural substance that can be degraded...

  • 18 November 2014

    Plaisance: Well Control Institute evaluating priority topics

    The Well Control Institute (WCI) Board of Directors convened on 11 November in New Orleans. Moe Plaisance, who recently retired from Diamond Offshore Drilling, has...

  • 18 November 2014

    Powell: Drilling contractors responsible for well control; planning, risk assessment fall under operators in EU directive

    Before joining IADC, Taf Powell served with the European Commission as an expert adviser in offshore drilling and...

  • Read more news