New GE tool offers real-time shock, vibration measurement

Posted on 05 March 2014

GE has unveiled its Directive system, which adds real-time shock and vibration measurement capabilities to the company’s Tensor Directional Module, from its measurement while drilling (MWD) family of downhole drilling equipment. The tool helps to optimize drilling penetration rates by allowing adjustments and corrections to be made quickly based on real-time data. Real-time management of downhole vibrations also is expected to reduce equipment damage, thereby reducing nonproductive time and costs.

“The design and development of the Directive sensor package was driven by ever-increasing customer requirements for improved reliability and real-time shock and vibration measurements at high temperature,” said James Junker, Global Business Leader—GE Downhole Technology for GE Oil & Gas. “Such measurements aren’t new to the industry, but the Directive system design features inherent calibration stability for a far longer duration than other commercially available products, leading to a lower cost of ownership for this tool versus competitive products.”

Optimal placement of directional and horizontal wells within a reservoir requires knowing the precise location of the drill bit and the orientation of its tool face at every moment during the drilling process. The drill bit’s location is measured by downhole gravity and magnetic sensors, which are used to perform directional surveys that take into account inclination, azimuth and drill bit tool face orientation. The survey information is then transmitted uphole either through mud pulse telemetry or electromagnetic waves. The Directive sensor package provides critical real-time measurements designed to enable the drill bit to be oriented in a preferred direction quickly.

The system has a simplified, ruggedized and compact design with fewer components and can operate at operating temperatures up to 175°C. Calibration stability of the sensor package under harsh drilling conditions is engineered for longer intervals. Additionally, the system has greater processing power than the Tensor Directional Module and features a simplified board design, which packs the processor, four channels of detectors, an A/D converter, two MEMS accelerometers and 32 MB of memory for enhanced diagnostics and lifetime events storage, all on a reduced number of boards.

1 Comments For This Post

  1. Qiming Li Says:

    Hi Great article. Can you confirm that the Directive System has “Two” MEMS accelerometers? Usually it takes three in such an D&I module. Thanks. Qiming

Leave a Reply

*

FEATURED MICROSITES


Recent Drilling News

  • 31 March 2015

    Active risk assessment, global sharing at core of Nabors safety observation card

    Gagan Singhal, Area Manager at Nabors Drilling International, outlined a new safety intervention system that helps the company...

  • 30 March 2015

    National Petroleum Council: US can safely tap Arctic resources to secure energy needs

    Prudently developing US Arctic oil and natural gas resources would enhance America’s position as a global leader in energy production for the next 35 years...

  • 30 March 2015

    Joint safety improvement plan aligns HSE objectives, “language” for Shell, Halliburton

    Speaking at a joint presentation with Halliburton at the 2015 IADC HSE&T Asia Pacific Conference in Kuala Lumpur on 12 March, Alain Moonen...

  • 27 March 2015

    Gravity-deployed carbon composite cable completes first commercial deployment offshore Norway

    Ziebel, a Stavanger-based provider of specialist well intervention services for the oil and gas industry, announced that its Z-Line gravity-deployed...

  • 27 March 2015

    Petronas’ INSTEP training institute plans improvements for integrated, experiential learning

    Institut Teknologi PETRONAS (INSTEP) takes realism seriously when it comes to experiential learning – seriously enough to be planning...

  • Read more news