Drill Bits Dull Grading System Upgrade

Feb 9th 2022

Outline

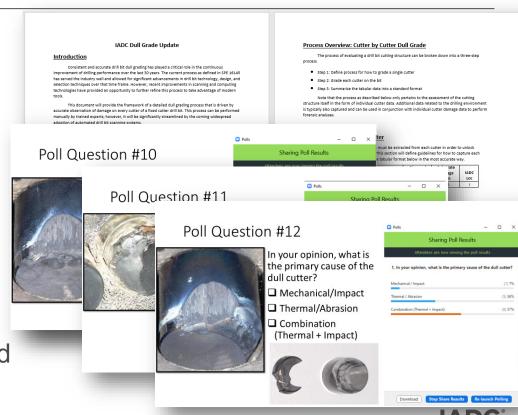
- Objective
- Charter
- Progress Overview
- Advanced Dull Grading Process Map
- Grading Every Cutter Training Examples
- Key Accomplishments
- Additional Considerations
- Next Steps

Objective

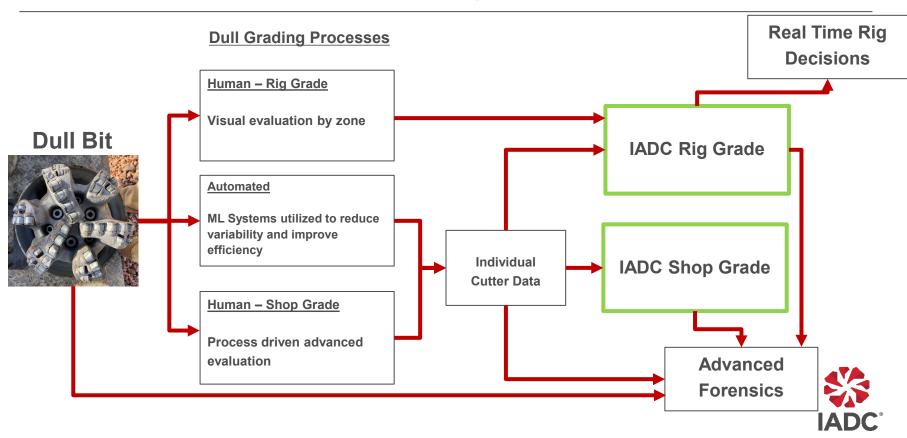
Re-write the IADC dull grading system to better support a workflow **focused** on continuous improvement and root cause analysis.

This section of the grading system shall focus on a qualitative classification scheme of **PDC cutters**, **drill bits**, **and tools with cutting elements**, with a second priority on quantitative analysis.

Charter Statement


Create a Forensics Evaluation Workflow(s) and Best Practice(s) Document to be published within IADC and SPE.

Collect the most common cutter damage examples, group and label them according to the workgroup consensus	X
Define a standard set of words and descriptions for each class	Х
Gather, label and provide to the Case Study Workgroup a large set of case study photo examples for human training and machine learning	
Document the frequency of occurrence of different degradation modes to use as a priority guide for training documents	
Review and update all other bit related codes within the current IADC system to make sure they are; needed, unique, well understood, and up to date. (Broken blades, washouts, etc.)	
Concentrate on PDC drill bits, then make this compatible with, Roller Cones, Reamers and Under Reamers, and Hybrid bits	X
Document the new proposed codes and resolve any conflicts with the other workgroups	X
Review the proposed codes, storage methods, and examples with industry experts for alignment	
Conduct an end user field trial of the new system and update codes and instructions based on feedback Repeat if required	
Create a final best practices document	



Progress Overview

- SME forum established
 - 17 Meetings to date
 - Attendees 30-50/meeting
- Extensive polling
- Training document drafted
 - Group effort
 - 42 pages of content so far
- Training examples developed

Advanced Dull Grading Process Map

Grading Every Cutter

Enabling consistent data rich dull grading is key to unlocking

advanced bit forensics

- 1. Define process for how to grade a single cutter
- 2. Grade each cutter on the bit
- 3. Summarize the tabular data into a standard format

CUTTING STRUCTURE				В	G	REMARKS		
INNER ROWS	OUTER ROWS	DULL CHAR.	LOCA- TION	BRNG/ SEALS	GAUGE 1/16"	OTHER CHAR.	REASON PULLED	
_ /	_	1		_	/	_	•	

	PDC Cutter Damage			
3		.,	01 11	
	<u>Cone</u>	<u>Nose</u>	<u>Shoulder</u>	<u>Gauge</u>
Cutter Damage Severity	0.3	2.2	7.5	3.8
<u>% Diamond Loss</u>	5%	20%	27%	44%
Primary Cutter Damage Char.	ND	WC	SC	BC
Secondary Cutter Damage Char.	ND	SC	BM	TB
Substrate Damage Char.	NDS	NDS	ERS	ERS

				Diamond	Substrate	
Blade	Pocket	Bit Zone	% Loss (Area)	Damage Class	Damage Class	IADC Loc
1	101	С	0.00%	ND	ERS	1
1	102	С	1.59%	ND	NDS	1
1	103	С	0.00%	ND	NDS	1
1	104	N	1.41%	ND	NDS	0
1	105	S	60.06%	ND	NDS	0
1	106	S	32.48%	ND	NDS	0
1	107	G	97.47%	WC	NDS	0
2	201	N	0.24%	WC	NDS	1
2	202	S	59.83%	WC	NDS	0
2	203	S	24.28%	WC	ERS	0
2	204	G	4.57%	SC	ERS	0
3	301	С	0.00%	SC	ERS	1
3	302	С	0.02%	SC	ERS	1
3	303	N	0.18%	SC	ERS	1
3	304	S	99.85%	SC	ERS	0
3	305	S	12.11%	SC	ERS	0
3	306	G	0.95%	SC	ERS	0
3	307	G	2.00%	SC	ERS	0
4	401	N	1.33%	SC	ERS	1
4	402	S	29.94%	SC	ERS	0
4	403	S	21.07%	SC	ERS	0
4	404	S	98.95%	SC	ERS	0
4	405	G	3.04%	SC	CRS	0
5	501	С	0.33%	SC	CRS	1
5	502	С	0.26%	SC	CRS	1
5	503	N	0.57%	SC	CRS	1
5	504	S	8.12%	SC	CRS	0
5	505	S	32.98%	CC	CRS	0
5	506	S	20.99%	CC	CRS	0
5	507	G	3.98%	CC	CRS	0
						DO

Key Accomplishments

Universal damage classification scheme established

PDC Cutter Damage Categories:

ND – No Damage

CD – Chamfer Damage

CC – Chipped Cutter

WC – Worn Cutte

SC – Spalled Cutter

BM – Beach marks

IS - Island Spall

BC - Broken Cutter

AB – Axial Break

TB – Tangential Break

DC – Delaminated Cutter

FC – Face Crack

ID – Indeterminate Damage

LC – Lost Cutter

Red Text indicates shop grade only categories

Advanced Cutter Damage Categories – Shop Grade

CD - Chamfer Damage

No Major Damage w/ Rounded Chamfer

CC - Chipped Cutter

Wear scar with angular and/or flaking cutting edge

BM - Beach Marks

 Spalling with indications of curved fractures on the face of the diamond

IS - Island Spall

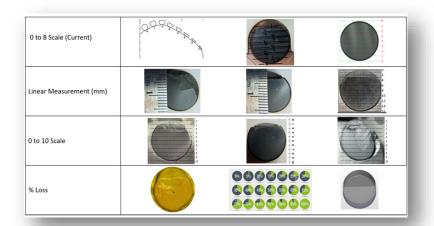
 Spalled Cutter w/Diamond Pull Out. Flaking of the cutter face does not extend to the carbide and some of the face remaining intact, whereas a portion of flaking is surrounding by intact cutter face

AB - Axial Break

 Diamond loss exposing a portion of the carbide substrate with at least a portion of the diamond fracture plane parallel to the cutter face, but with some cutter face intact

TB – Tangential Break

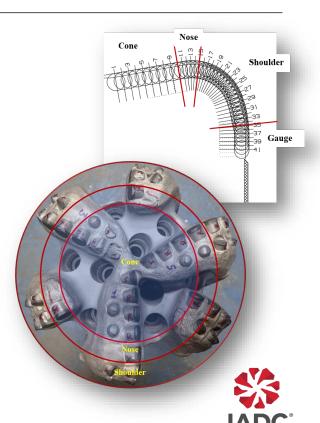
 Cutter sheared through diamond face through entirety of substrate


FC - Face Crack

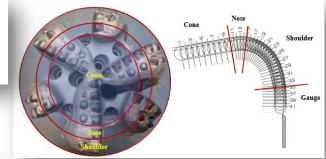
 Diamond face has single or multiple cracks that have not propagated to failure

Key Accomplishments - Cont.

- Introduction and standardization of additional measurements
 - Cutter substrate damage classes
 - Severity measurement system
 - Bit zones expanded



Bit Zones – expanded from Inner / Outer


- Cone: Cutters at the center of the drill bit, inside of the nose
- Nose: The cutter at the highest point of the blade arc (one cutter per blade)
- Shoulder: Cutters between the nose and gauge
- Gauge: The first cutter aligned with the top of the gauge pad

Additional Considerations - Subgroups

- Drill bit zone definition
- Shaped cutter compatibility
- Impreg/Hybrid bit compatibility
- Core head compatibility
- Roller cone compatibility
- Drill bit damage categories
- Reason pulled
 - (collaboration with BHA team)

Next Steps

- Finalize training examples
 - Develop field test plan
 - Refine coding, fix issues
- Revise paper/instructions
- Develop digital interface (DDR)
- Publish new standard

On to the BHA Group! Paul Neil

