

Sour Service

Vincent Flores – IADC Webinar

Sour Service Environment

Our challenge: Minimize risks

What is Sour Service?

- Sour Service: Well containing H₂S
- Origin: H₂S comes from decomposition of organic material.

Consequences?

- HSE Risk & Environmental Impact concerns: hazardous to human health, living organisms and environment.
- NPT & OPEX:
 - Loss of DP and/or BHA due to Sulfide Stress Cracking (SSC)
 - Fishing job required in case of failure
 - Non Productive Time in case of loss of well control

Risks Associated to Sour Service

Failure example

Risks on standard API grades (= non Sour Service grade):

- Sulfide Stress Cracking
 - → Unpredictable brittle failure
 - → Fishing costs
 - → Non-productive time for drilling contractors
- Failure example on 5 " DP, S-135 API grade

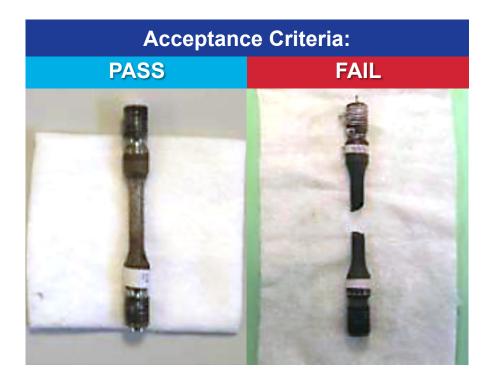
Drilling Challenges

Catastrophic Failure

Failure mechanism: Sulfide Stress Cracking (SSC)

- When Yield strength
- ∘ Grade H₂S resistance ᡈ
- SSC phenomenon occurrence
- Failure risks

NACE Testing Methods


NACE A

NACE "Tensile Test" under uniaxial tensile load.

- Failure/no failure test
- Test duration: 720h

NACE TM 0177 (2005) defines 4 testing methods

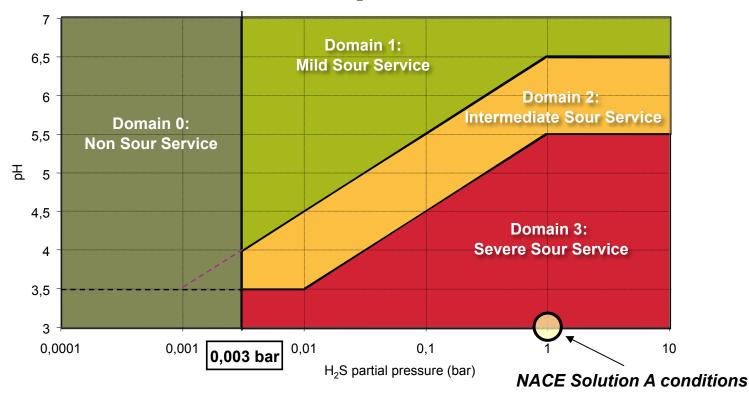
- Method A is the most used for drilling products
- Solution A is the most used environment (Severe Sour environment)

NACE Testing Method A

NACE Test A: Laboratory Procedure

Environmental Testing Chamber

Application of tensile load = % SMYS


Example of samples under testing process

Sour Service Severity Domains

NACE Material Recommendations: NACE MR0175

- 4 domains of susceptibility to H₂S
- pH and partial pressure of H₂S as major parameters
 - Partial pressure = %H₂S x total pressure

Material Selection for H₂S resistant Drill Pipe

- No guideline in API 5DP & ISO11961
- Not included in the scope of the NACE MR0175 / ISO15156

• Industry initiatives:

- Regional regulations: in Canada → Industry Recommended Practices (IRP) Volume 1 & 6 issued in 2004 (Vallourec produced its first IRP grade in 2007 for Sinopec)
- Manufacturers: developing a variety of proprietary grades using NACE TM0177 testing since the 90's
- VNIIGAS qualification for Gazprom in Russia (Vallourec passed in 2009 and produced its order for Burgas-Gazprom in 2010)

A decade of IRP Drill Pipe use:

- Worldwide supply: from one manufacturer in 2004 to > 5 in 2014
- Originated in Canada but used in several parts of the world, mainly: Russia, Middle East, China and Brazil
- Successful switch from API to IRP products with safe operations

Evolution of the drilling environments & new frontiers

Pushing towards harsher drilling environments:

- Due to increase of domestic gas demand, fields with higher and higher
 H₂S content are being explored and developed
- Managed Pressure Drilling & Underbalanced Drilling increase the risk of Drill Pipe exposure to fluids coming from the formation
- HSE concerns is a first priority
- Integrity of the entire Drill Pipe should now be considered

New frontiers:

- Highly sour fields (higher H₂S content). Example: Shah-24%, Bab-35% (UAE), SRAK-38% (KSA), Kurdistan-36% (Iraq)
- HPHT conditions increasing the H₂S partial pressure → SSC risk

Technological challenges:

- SSC resistance in norms consider the pipe body and tool joint separatly and ignore the weld zone and upsets
- The weld zone and upsets have metallurgical heterogeneities and often high hardness points, potentially detrimental to SSC
- Even IRP 1.8 specification does not cover these areas

Sour Service Grades

Sour Service steel = material with resistance to H₂S

Key processes control:

- Steelmaking:
 - Supreme cleanliness
 - Dedicated steel chemistries
- Heat treatment:
 - Homogeneous and fine microstructure
 - Specific heat treatments (double Q & T)
- Welding:
 - Controlled hardness
 - Dedicated tempering

Sour Service Grades

Specific Chemistry

Specific Heat Treatment

Conclusion

Sour Service supplier of choice

- Vertical integration of Vallourec mills
- In-house R&D expertise and NACE testing facilities
- Proven manufacturer of IRP 1.8 compliant products
- Manufacturer of Sour Service BHA
- Reliable quality products through more than 2,000,000 ft of Sour Service products used worldwide since 2007 without any failure!

Sour Service technical leader

- On board of NACE committee and contributing to IRP & ISO standards
- Yearly publications in international conferences
- Industry recognized expertise in specialized workshops and technical conferences
- Four new grades developed since the past 2 years, to address new frontiers and the extension of the drilling envelope

